翻訳と辞書
Words near each other
・ Brzozowo-Antonie
・ Brzozowo-Chabdy
・ Brzozowo-Chrzczonki
・ Brzozowo-Chrzczony
・ Brzozowo-Czary
・ Brzozowo-Dąbrówka
・ Brzozowo-Kolonia
・ Brzozowo-Korabie
・ Brzozowo-Maje
・ Brzozowo-Muzyły
・ Brzozowo-Panki
・ Brzozowo-Solniki
・ Brzozowo-Utraty
・ Brzozowo-Łęg
・ Brzozowski
Brzozowski derivative
・ Brzozowy Borek
・ Brzozowy Hrud
・ Brzozowy Kąt, Lublin Voivodeship
・ Brzozowy Kąt, Masovian Voivodeship
・ Brzozowy Ług
・ Brzozy
・ Brzozów
・ Brzozów (disambiguation)
・ Brzozów County
・ Brzozów Nowy
・ Brzozów Stary
・ Brzozów, Lubusz Voivodeship
・ Brzozów, Siedlce County
・ Brzozów, Skierniewice County


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brzozowski derivative : ウィキペディア英語版
Brzozowski derivative

In theoretical computer science, in particular in formal language theory, the Brzozowski derivative ''u''−1''S'' of a set ''S'' of strings and a string ''u'' is defined as the set of all rest-strings obtainable from a string in ''S'' by cutting off its prefix ''u'' (if possible), formally: ''u''−1''S'' = , cf. picture.
It is named after the computer scientist Janusz Brzozowski who investigated their properties and gave an algorithm to compute the derivative of a generalized regular expression.
==Derivative of a regular expression==

Given a finite alphabet ''A'' of symbols,〔Brzozowski (1964), p.481, required ''A'' to consist of the 2''n'' combinations of ''n'' bits, for some ''n''.〕 a generalized regular expression denotes a possibly infinite set of finite-length strings of symbols from ''A''. It may be built of:
* ∅ (denoting the empty set of strings),
* ε (denoting the singleton set containing just the empty string),
* a symbol ''a'' from ''A'' (denoting the singleton set containing the single-symbol string ''a''),
* ''R''∨''S'' (where ''R'' and ''S'' are, in turn, generalized regular expressions; denoting their set's union),
* ''R''∧''S'' (denoting the intersection of ''R'' 's and ''S'' 's set),
* ¬''R'' (denoting the complement of ''R'' 's set with respect to the set of all strings of symbols from ''A''),
* ''RS'' (denoting the set of all possible concatenations of strings from ''R'' 's and ''S'' 's set),
* ''R''
*
(denoting the set of ''n''-fold repetitions of strings from ''R'' 's set, for any ''n''≥0, including the empty string).
In an ordinary regular expression, neither ∧ nor ¬ is allowed.
The string set denoted by a generalized regular expression ''R'' is called its language, denoted as ''L''(''R'').
As an auxiliary function, δ(''R'') yields the empty string ε if the language corresponding to ''R'' contains ε; otherwise, δ(''R'') yields ∅. This function can be computed by the following rules:〔Brzozowski (1964), p.482, Definition 3.2〕
Based on that, the derivative of a generalized regular expression with respect to a single-symbol string ''a'' can be computed as follows:〔Brzozowski (1964), p.483, Theorem 3.1〕
Finally, for a symbol ''a'', an arbitrary string ''u'', and a generalized regular expression ''R'', the derivative (''ua'')−1''R'' can be computed recursively as ''a''−1(''u''−1''R''); and ε−1''R'' simply equals ''R''.〔Brzozowski (1964), p.483, Theorem 3.2〕
This way, for any given generalized regular expression ''R'' and any string ''u'', the derivative ''u''−1''R'' may be computed as another generalized regular expression.〔Brzozowski (1964), p.483, Theorem 4.1〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Brzozowski derivative」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.